Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Pineal Res ; 70(3): e12724, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33615553

RESUMEN

Cancer-related fatigue (CRF) and stress are common symptoms in cancer patients and represent early side effects of cancer treatment which affect the life quality of the patients. CRF may partly depend on disruption of the circadian rhythm. Locomotor activity and corticosterone rhythms are two important circadian outputs which can be used to analyze possible effects on the circadian function during cancer development and treatment. The present study analyzes the relationship between locomotor activity rhythm, corticosterone levels, hepatocellular carcinoma (HCC) development, and radiotherapy treatment in a mouse model. HCC was induced in mice by single injection of diethylnitrosamine (DEN) and chronic treatment of phenobarbital in drinking water. Another group received chronic phenobarbital treatment only. Tumor bearing animals were divided randomly into four groups irradiated at four different Zeitgeber time points. Spontaneous locomotor activity was recorded continuously; serum corticosterone levels and p-ERK immunoreaction in the suprachiasmatic nucleus (SCN) were investigated. Phenobarbital treated mice showed damped corticosterone levels and a less stable 24 hours activity rhythm as well as an increase in activity during the light phase, reminiscent of sleep disruption. The tumor mice showed an increase in corticosterone level during the inactive phase and decreased activity during the dark phase, reminiscent of CRF. After irradiation, corticosterone levels were further increased and locomotor activity rhythms were disrupted. Lowest corticosterone levels were observed after irradiation during the early light phase; thus, this time might be the best to apply radiotherapy in order to minimize side effects.


Asunto(s)
Ciclos de Actividad , Conducta Animal , Carcinoma Hepatocelular/radioterapia , Ritmo Circadiano , Corticosterona/sangre , Neoplasias Hepáticas Experimentales/radioterapia , Locomoción , Núcleo Supraquiasmático/fisiopatología , Animales , Biomarcadores/sangre , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/fisiopatología , Cronoterapia , Dietilnitrosamina , Progresión de la Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias Hepáticas Experimentales/sangre , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Circadianas Period/genética , Fenobarbital , Fosforilación , Núcleo Supraquiasmático/metabolismo , Factores de Tiempo
2.
eNeuro ; 6(6)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31744839

RESUMEN

The circadian clock located in the suprachiasmatic nucleus (SCN) in mammals entrains to ambient light via the retinal photoreceptors. This allows behavioral rhythms to change in synchrony with seasonal and daily changes in light period. Circadian rhythmicity is progressively disrupted in Huntington's disease (HD) and in HD mouse models such as the transgenic R6/2 line. Although retinal afferent inputs to the SCN are disrupted in R6/2 mice at late stages, they can respond to changes in light/dark cycles, as seen in jet lag and 23 h/d paradigms. To investigate photic entrainment and SCN function in R6/2 mice at different stages of disease, we first assessed the effect on locomotor activity of exposure to a 15 min light pulse given at different times of the day. We then placed the mice under five non-standard light conditions. These were light cycle regimes (T-cycles) of T21 (10.5 h light/dark), T22 (11 h light/dark), T26 (13 h light/dark), constant light, or constant dark. We found a progressive impairment in photic synchronization in R6/2 mice when the stimuli required the SCN to lengthen rhythms (phase-delaying light pulse, T26, or constant light), but normal synchronization to stimuli that required the SCN to shorten rhythms (phase-advancing light pulse and T22). Despite the behavioral abnormalities, we found that Per1 and c-fos gene expression remained photo-inducible in SCN of R6/2 mice. Both the endogenous drift of the R6/2 mouse SCN to shorter periods and its inability to adapt to phase-delaying changes will contribute to the HD circadian dysfunction.


Asunto(s)
Ritmo Circadiano/fisiología , Enfermedad de Huntington/fisiopatología , Actividad Motora/fisiología , Fotoperiodo , Retina/fisiopatología , Núcleo Supraquiasmático/fisiopatología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Enfermedad de Huntington/metabolismo , Ratones , Neuronas/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Estimulación Luminosa , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Retina/metabolismo , Núcleo Supraquiasmático/metabolismo
3.
Cephalalgia ; 39(13): 1720-1727, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31615269

RESUMEN

AIM: To describe neuronal networks underlying commonly reported migraine premonitory symptoms and to discuss how these might precipitate migraine pain. BACKGROUND: Migraine headache is frequently preceded by a distinct and well characterized premonitory phase including symptoms like yawning, sleep disturbances, alterations in appetite and food intake and hypersensitivity to certain external stimuli. Recent neuroimaging studies strongly suggest the hypothalamus as the key mediator of the premonitory phase and also suggested alterations in hypothalamic networks as a mechanism of migraine attack generation. When looking at the vast evidence from basic research within the last decades, hypothalamic and thalamic networks are most likely to integrate peripheral influences with central mechanisms, facilitating the precipitation of migraine headaches. These networks include sleep, feeding and stress modulating centers within the hypothalamus, thalamic pathways and brainstem centers closely involved in trigeminal pain processing such as the spinal trigeminal nucleus and the rostral ventromedial medulla, all of which are closely interconnected. CONCLUSION: Taken together, these networks represent the pathophysiological basis for migraine premonitory symptoms as well as a possible integration site of peripheral so-called "triggers" with central attack facilitating processes.


Asunto(s)
Migraña sin Aura/fisiopatología , Síntomas Prodrómicos , Afecto , Apetito/fisiología , Tronco Encefálico/fisiopatología , Ritmo Circadiano/fisiología , Ansia/fisiología , Ingestión de Alimentos , Homeostasis , Humanos , Migraña sin Aura/complicaciones , Migraña sin Aura/etiología , Migraña sin Aura/psicología , Red Nerviosa/fisiopatología , Neuroimagen , Neurotransmisores/fisiología , Óxido Nítrico/fisiología , Fotofobia/etiología , Fotofobia/fisiopatología , Estimulación Física/efectos adversos , Fases del Sueño/fisiología , Núcleo Supraquiasmático/fisiopatología , Tálamo/fisiopatología
4.
Vascul Pharmacol ; 108: 1-7, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29778521

RESUMEN

The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease.


Asunto(s)
Vasos Sanguíneos/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano , Hemodinámica , Núcleo Supraquiasmático/metabolismo , Enfermedades Vasculares/metabolismo , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/fisiopatología , Fármacos Cardiovasculares/administración & dosificación , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Cronoterapia de Medicamentos , Regulación de la Expresión Génica , Hemodinámica/efectos de los fármacos , Humanos , Transducción de Señal , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/fisiopatología , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/genética , Enfermedades Vasculares/fisiopatología
5.
Behav Neurosci ; 128(3): 326-43, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24660658

RESUMEN

Mood disorders are multifactorial and heterogeneous diseases caused by the interplay of several genetic and environmental factors. In humans, mood disorders are often accompanied by abnormalities in the organization of the circadian system, which normally synchronizes activities and functions of cells and tissues. Studies on animal models suggest that the basic circadian clock mechanism, which runs in essentially all cells, is implicated in the modulation of biological phenomena regulating affective behaviors. In particular, recent findings highlight the importance of the circadian clock mechanisms in neurological pathways involved in mood, such as monoaminergic neurotransmission, hypothalamus-pituitary-adrenal axis regulation, suprachiasmatic nucleus and olfactory bulb activities, and neurogenesis. Defects at the level of both, the circadian clock mechanism and system, may contribute to the etiology of mood disorders. Modification of the circadian system using chronotherapy appears to be an effective treatment for mood disorders. Additionally, understanding the role of circadian clock mechanisms, which affect the regulation of different mood pathways, will open up the possibility for targeted pharmacological treatments.


Asunto(s)
Afecto , Relojes Circadianos/fisiología , Trastornos del Humor/fisiopatología , Animales , Antidepresivos/uso terapéutico , Monoaminas Biogénicas/metabolismo , Trastornos Cronobiológicos/complicaciones , Cronoterapia/métodos , Relojes Circadianos/genética , Humanos , Sistema Hipotálamo-Hipofisario/fisiopatología , Modelos Biológicos , Trastornos del Humor/complicaciones , Trastornos del Humor/tratamiento farmacológico , Trastornos del Humor/genética , Trastornos del Humor/metabolismo , Trastornos del Humor/terapia , Neurogénesis/fisiología , Bulbo Olfatorio/fisiopatología , Fotoperiodo , Sistema Hipófiso-Suprarrenal/fisiopatología , Núcleo Supraquiasmático/fisiopatología
6.
Neuropsychobiology ; 64(3): 152-62, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21811085

RESUMEN

Bright-light therapy (BLT) is established as the treatment of choice for seasonal affective disorder/winter type (SAD). In the last two decades, the use of BLT has expanded beyond SAD: there is evidence for efficacy in chronic depression, antepartum depression, premenstrual depression, bipolar depression and disturbances of the sleep-wake cycle. Data on the usefulness of BLT in non-seasonal depression are promising; however, further systematic studies are still warranted. In this review, the authors present a comprehensive overview of the literature on BLT in mood disorders. The first part elucidates the neurobiology of circadian and seasonal adaptive mechanisms focusing on the suprachiasmatic nucleus (SCN), the indolamines melatonin and serotonin, and the chronobiology of mood disorders. The SCN is the primary oscillator in humans. Indolamines are known to transduce light signals into cells and organisms since early in evolution, and their role in signalling change of season is still preserved in humans: melatonin is synthesized primarily in the pineal gland and is the central hormone for internal clock circuitries. The melatonin precursor serotonin is known to modulate many behaviours that vary with season. The second part discusses the pathophysiology and clinical specifiers of SAD, which can be seen as a model disorder for chronobiological disturbances and the mechanism of action of BLT. In the third part, the mode of action, application, efficacy, tolerability and safety of BLT in SAD and other mood disorders are explored.


Asunto(s)
Trastornos Cronobiológicos/terapia , Trastornos del Humor/terapia , Fototerapia/métodos , Fototerapia/psicología , Trastorno Afectivo Estacional/terapia , Trastornos Cronobiológicos/complicaciones , Trastornos Cronobiológicos/fisiopatología , Ritmo Circadiano/fisiología , Humanos , Melatonina/fisiología , Trastornos del Humor/complicaciones , Trastornos del Humor/fisiopatología , Fototerapia/efectos adversos , Trastorno Afectivo Estacional/fisiopatología , Serotonina/fisiología , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/fisiopatología
7.
Eur Neuropsychopharmacol ; 21 Suppl 4: S683-93, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21835596

RESUMEN

Affective disorders such as major depression, bipolar disorder, and seasonal affective disorder are associated with major disruptions in circadian rhythms. Indeed, altered sleep/wake cycles are a critical feature for diagnosis in the DSM IV and several of the therapies used to treat these disorders have profound effects on rhythm length and stabilization in human populations. Furthermore, multiple human genetic studies have identified polymorphisms in specific circadian genes associated with these disorders. Thus, there appears to be a strong association between the circadian system and mood regulation, although the mechanisms that underlie this association are unclear. Recently, a number of studies in animal models have begun to shed light on the complex interactions between circadian genes and mood-related neurotransmitter systems, the effects of light manipulation on brain circuitry, the impact of chronic stress on rhythms, and the ways in which antidepressant and mood-stabilizing drugs alter the clock. This review will focus on the recent advances that have been gleaned from the use of pre-clinical models to further our understanding of how the circadian system regulates mood.


Asunto(s)
Afecto/fisiología , Ritmo Circadiano/fisiología , Trastornos del Humor/fisiopatología , Afecto/efectos de los fármacos , Animales , Ritmo Circadiano/efectos de los fármacos , Cricetinae , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Modelos Animales , Trastornos del Humor/tratamiento farmacológico , Trastornos del Humor/epidemiología , Ratas , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Núcleo Supraquiasmático/patología , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/fisiopatología
8.
Neurobiol Dis ; 42(3): 438-45, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21324360

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder involving progressive motor disturbances, cognitive decline, and desynchronized sleep-wake rhythms. Recent studies revealed that restoring normal sleep-wake cycles can improve cognitive function in HD mice, suggesting that some sleep/wake systems remain operational and thus represent potential therapeutic targets for HD. Hypothalamic neurons expressing orexins/hypocretins (orexin neurons) are fundamental orchestrators of arousal in mammals, but it is unclear whether orexin circuits operate normally in HD. Here we analyzed the electrophysiology, histology, and gene expression of orexin circuits in brain slices from R6/2 mice, a transgenic model of HD with a progressive neurological phenotype. We report that in R6/2 mice, the size of an electrically distinct subpopulation of orexin neurons is reduced, as is the number of orexin-immunopositive cells in some hypothalamic regions. R6/2 orexin cells display altered glutamatergic inputs, and have an abnormal circadian profile of activity, despite normal circadian rhythmicity of the suprachiasmatic nucleus (SCN), the "master clock" of the brain. Nevertheless, even at advanced stages of HD, intrinsic firing properties of orexin cells remain normal and suppressible by serotonin, noradrenaline, and glucose. Furthermore, histaminergic neurons (key cells required for the propagation of orexin-induced arousal) also display normal responses to orexin. Together, these data suggest that the orexin system remains functional and modifiable in HD mice, although its circadian activity profile is disrupted and no longer follows that of the SCN.


Asunto(s)
Nivel de Alerta/fisiología , Enfermedad de Huntington/fisiopatología , Hipotálamo/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Análisis de Varianza , Animales , Recuento de Células , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Electrofisiología , Enfermedad de Huntington/metabolismo , Hipotálamo/metabolismo , Inmunohistoquímica , Ratones , Actividad Motora/fisiología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Orexinas , Sueño/fisiología , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiopatología
9.
Trials ; 11: 19, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20178604

RESUMEN

BACKGROUND: Depression frequently occurs in the elderly and in patients suffering from dementia. Its cause is largely unknown, but several studies point to a possible contribution of circadian rhythm disturbances. Post-mortem studies on aging, dementia and depression show impaired functioning of the suprachiasmatic nucleus (SCN) which is thought to be involved in the increased prevalence of day-night rhythm perturbations in these conditions. Bright light enhances neuronal activity in the SCN. Bright light therapy has beneficial effects on rhythms and mood in institutionalized moderate to advanced demented elderly. In spite of the fact that this is a potentially safe and inexpensive treatment option, no previous clinical trial evaluated the use of long-term daily light therapy to prevent worsening of sleep-wake rhythms and depressive symptoms in early to moderately demented home-dwelling elderly. METHODS/DESIGN: This study investigates whether long-term daily bright light prevents worsening of sleep-wake rhythms and depressive symptoms in elderly people with memory complaints. Patients with early Alzheimer's Disease (AD), Mild Cognitive Impairment (MCI) and Subjective Memory Complaints (SMC), between the ages of 50 and 75, are included in a randomized double-blind placebo-controlled trial. For the duration of two years, patients are exposed to approximately 10,000 lux in the active condition or approximately 300 lux in the placebo condition, daily, for two half-hour sessions at fixed times in the morning and evening. Neuropsychological, behavioral, physiological and endocrine measures are assessed at baseline and follow-up every five to six months. DISCUSSION: If bright light therapy attenuates the worsening of sleep-wake rhythms and depressive symptoms, it will provide a measure that is easy to implement in the homes of elderly people with memory complaints, to complement treatments with cholinesterase inhibitors, sleep medication or anti-depressants or as a stand-alone treatment. TRIAL REGISTRATION: ISRCTN29863753.


Asunto(s)
Relojes Biológicos , Ritmo Circadiano , Demencia/terapia , Depresión/prevención & control , Trastornos de la Memoria/terapia , Fototerapia , Trastornos del Sueño-Vigilia/prevención & control , Núcleo Supraquiasmático/fisiopatología , Actividades Cotidianas , Factores de Edad , Anciano , Biomarcadores/sangre , Demencia/fisiopatología , Demencia/psicología , Depresión/fisiopatología , Depresión/psicología , Método Doble Ciego , Humanos , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/psicología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Fototerapia/efectos adversos , Proyectos de Investigación , Trastornos del Sueño-Vigilia/fisiopatología , Trastornos del Sueño-Vigilia/psicología , Factores de Tiempo , Resultado del Tratamiento
10.
J Neuroendocrinol ; 22(5): 362-72, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20088910

RESUMEN

The physiological effects of vasopressin as a peripheral hormone were first reported more than 100 years ago. However, it was not until the first immunocytochemical studies were carried out in the early 1970s, using vasopressin antibodies, and the discovery of an extensive distribution of vasopressin-containing fibres outside the hypothalamus, that a neurotransmitter role for vasopressin could be hypothesised. These studies revealed four additional vasopressin systems next to the classical magnocellular vasopressin system in the paraventricular and supraoptic nuclei: a sexually dimorphic system originating from the bed nucleus of the stria terminalis and the medial amygdala, an autonomic and endocrine system originating from the medial part of the paraventricular nucleus, and the circadian system originating from the hypothalamic suprachiasmatic nuclei (SCN). At about the same time as the discovery of the neurotransmitter function of vasopressin, it also became clear that the SCN contain the main component of the mammalian biological clock system (i.e. the endogenous pacemaker). This review will concentrate on the significance of the vasopressin neurones in the SCN for the functional output of the biological clock that is contained within it. The vasopressin-containing subpopulation is a characteristic feature of the SCN in many species, including humans. The activity of the vasopressin neurones in the SCN shows a pronounced daily variation in its activity that has also been demonstrated in human post-mortem brains. Animal experiments show an important role for SCN-derived vasopressin in the control of neuroendocrine day/night rhythms such as that of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes. The remarkable correlation between a diminished presence of vasopressin in the SCN and a deterioration of sleep-wake rhythms during ageing and depression make it likely that, also in humans, the vasopressin neurones contribute considerably to the rhythmic output of the SCN.


Asunto(s)
Relojes Biológicos/fisiología , Hipotálamo/fisiología , Vasopresinas/fisiología , Animales , Humanos , Masculino , Transducción de Señal , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/fisiopatología
11.
Neuropsychopharmacol Hung ; 11(2): 69-81, 2009 Jun.
Artículo en Húngaro | MEDLINE | ID: mdl-19827314

RESUMEN

Chronobiological problems are always present as aetiological or pathoplastic conditions almost in all psychiatric disorders and considered as the greatest contributors to the mood and sleep disorders associated problems. The present review summarise the recent advances in the chronobiology research from the point of the clinician with particular emphasis on the psychobiology and pharmacotherapy of the depression. Human behaviour builds up from different length of circadian, ultradian and seasonal rhytms, strictly controlled by a hierarchical organisation of sub-cellullar, cellular, neuro-humoral and neuro-immunological clock systems. These internal clock systems are orchestrated at molecular level by certain clock genes and on the other hand--at neuro-humoral level--by the effect of the sleep hormone, melatonine, produced by the neurons of the suprachiasmatic nucleus (SCN). Beside the biological factors, social interactions are also considered as important regulators of the biological clock systems. The pacemaker centers of the SCN receive efferents from the serotoninergic raphe nuclei in order to regulate stress responses and neuroimmunological functions. The direction and the level of the chronobiological desynchronisation could be totally divergent in the case of the different affective disorders. Different chronobiological interventions are required therefore in the case of the advanced and delayed sleep disorders. Sleeping disorders are considered as the most recognised signs of the chronobiological desynchronisation in depression, but these symptoms are only the tip of the iceberg, since other chronobiological symptoms could be present due to the hidden physiological abnormalities. The serum melatonine profile is considered to be characteristic to age, gender and certain neuropsychiatric disorders. The natural and synthetic agonist of the melatonine receptors could be used as chronobiotics. The recently marketed agomelatine with a highly selective receptor binding profile (MT1 and MT2 agonism and 5HT2C antagonism) targets the desynchronised circadian rhytm in affective disorders and it has mainly antidepressive effect. Among the non-pharmacological chronobiological interventions, the different forms of the sleep deprivation, light and social rhytm therapies could offer alternative treatment options for the clinician.


Asunto(s)
Relojes Biológicos , Cronoterapia , Ritmo Circadiano , Depresión/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Melatonina/sangre , Trastornos del Sueño-Vigilia/fisiopatología , Acetamidas/farmacología , Acetamidas/uso terapéutico , Afecto , Cronoterapia/métodos , Ritmo Circadiano/inmunología , Depresión/sangre , Depresión/etiología , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/etiología , Humanos , Hipnóticos y Sedantes/uso terapéutico , Melatonina/agonistas , Trastornos del Humor/fisiopatología , Receptor de Melatonina MT1/efectos de los fármacos , Receptor de Melatonina MT2/efectos de los fármacos , Sueño/inmunología , Privación de Sueño , Trastornos del Sueño-Vigilia/sangre , Trastornos del Sueño-Vigilia/etiología , Trastornos del Sueño-Vigilia/terapia , Núcleo Supraquiasmático/fisiopatología
13.
Encephale ; 35 Suppl 2: S53-7, 2009 Jan.
Artículo en Francés | MEDLINE | ID: mdl-19268171

RESUMEN

In recent decades our knowledge of the molecular mechanisms of biological clocks has grown expontentially. This has helped to guide the choice of genes studied to explain inter-individual variations seen in circadian rhythms. In recent years analysis of circadian rhythms has advanced considerably into the study of pathological circadian rhythms in human beings. These findings, combined with those obtained from studying mice whose circadian genes have been rendered incapable, have revealed the role of genetic factors in circadian rhythms. This literature review presents an overview of these findings. Beyond our understanding of the functioning of these biological clocks, this knowledge will be extremely useful to analyse genetic factors involved in morbid conditions involving circadian rhythm abnormalities.


Asunto(s)
Relojes Biológicos/genética , Trastornos Cronobiológicos/genética , Ritmo Circadiano/genética , Factores de Transcripción ARNTL , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Relojes Biológicos/fisiología , Proteínas CLOCK , Trastornos Cronobiológicos/fisiopatología , Ritmo Circadiano/fisiología , Humanos , Hipotálamo/fisiopatología , Ratones , Proteínas del Tejido Nervioso/genética , Fenotipo , Polimorfismo Genético/genética , Núcleo Supraquiasmático/fisiopatología , Transactivadores/genética
14.
Curr Psychiatry Rep ; 11(1): 20-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19187704

RESUMEN

Sleep disturbances are widespread among older adults. Degenerative neurologic disorders that cause dementia, such as Alzheimer's disease and Parkinson's disease, exacerbate age-related changes in sleep, as do many common comorbid medical and psychiatric conditions. Medications used to treat chronic illness and insomnia have many side effects that can further disrupt sleep and place patients at risk for injury. This article reviews the neurophysiology of sleep in normal aging and sleep changes associated with common dementia subtypes and comorbid conditions. Current pharmacologic and nonpharmacologic evidence-based treatment options are discussed, including the use of light therapy, increased physical and social activity, and multicomponent cognitive-behavioral interventions for improving sleep in institutionalized and community-dwelling adults with dementia.


Asunto(s)
Demencia/fisiopatología , Trastornos del Sueño-Vigilia/fisiopatología , Factores de Edad , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Ritmo Circadiano/fisiología , Terapia Cognitivo-Conductual , Terapia Combinada , Comorbilidad , Demencia/diagnóstico , Demencia/terapia , Homeostasis/fisiología , Humanos , Hipnóticos y Sedantes/efectos adversos , Hipnóticos y Sedantes/uso terapéutico , Hipotálamo Anterior/fisiopatología , Enfermedad por Cuerpos de Lewy/diagnóstico , Enfermedad por Cuerpos de Lewy/fisiopatología , Enfermedad por Cuerpos de Lewy/terapia , Estilo de Vida , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Fototerapia , Glándula Pineal/fisiopatología , Formación Reticular/fisiopatología , Factores de Riesgo , Fases del Sueño/fisiología , Trastornos del Sueño-Vigilia/diagnóstico , Trastornos del Sueño-Vigilia/terapia , Núcleo Supraquiasmático/fisiopatología
15.
Integr Cancer Ther ; 8(4): 298-302, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20042408

RESUMEN

The circadian timing system (CTS) coordinated by the suprachiasmatic nuclei (SCN) of the hypothalamus regulates daily rhythms of behavior, physiology, as well as cellular metabolism and proliferation. Altered circadian rhythms predict for poor survival in cancer patients. An increased incidence of several cancers has been reported in flight attendants and in shift workers. To explore the contribution of the CTS to tumor growth, we developed experimental models of disrupted or enhanced circadian coordination through stereotaxic destruction of the SCN, modifications of photoperiodic or feeding synchronizers and/or the administration of pharmacologic agents. SCN ablation or exposure to experimental chronic jetlag (CJL, consisting of an 8-hour advance of the light-dark cycle every 2 days) caused alterations in circadian physiology and significantly accelerated tumor growth. CJL suppressed or altered the rhythms of clock gene and cell cycle gene expression in mouse liver. It increased p53 and decreased c-Myc expression, a result in line with the promotion of diethylnitrosamine -initiated hepatocarcinogenesis in jet-lagged mice. The accelerating effect of CJL on tumor growth was counterbalanced by the regular timing of food access over the 24-h. Meal timing prevented the circadian disruption produced by CJL and slowed down tumor growth. In synchronized mice, meal timing reinforced host circadian coordination, phase-shifted the transcriptional rhythms of clock genes in the liver of tumor-bearing mice and slowed down cancer progression. These results support the role of the CTS in cancer progression and call for the development of therapeutic strategies aimed at preventing or treating circadian clock dysfunctions.


Asunto(s)
Ritmo Circadiano , Síndrome Jet Lag/complicaciones , Neoplasias Experimentales/etiología , Animales , Enfermedad Crónica , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Alimentos , Síndrome Jet Lag/fisiopatología , Masculino , Ratones , Neoplasias Experimentales/patología , Neoplasias Experimentales/fisiopatología , Fotoperiodo , Núcleo Supraquiasmático/fisiopatología
16.
Sleep Med ; 8(6): 623-36, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17383938

RESUMEN

Circadian rhythm disturbances, such as sleep disorders, are frequently seen in aging and are even more pronounced in Alzheimer's disease (AD). Alterations in the biological clock, the suprachiasmatic nucleus (SCN), and the pineal gland during aging and AD are considered to be the biological basis for these circadian rhythm disturbances. Recently, our group found that pineal melatonin secretion and pineal clock gene oscillation were disrupted in AD patients, and surprisingly even in non-demented controls with the earliest signs of AD neuropathology (neuropathological Braak stages I-II), in contrast to non-demented controls without AD neuropathology. Furthermore, a functional disruption of the SCN was observed from the earliest AD stages onwards, as shown by decreased vasopressin mRNA, a clock-controlled major output of the SCN. The observed functional disconnection between the SCN and the pineal from the earliest AD stage onwards seems to account for the pineal clock gene and melatonin changes and underlies circadian rhythm disturbances in AD. This paper further discusses potential therapeutic strategies for reactivation of the circadian timing system, including melatonin and bright light therapy. As the presence of melatonin MT1 receptor in the SCN is extremely decreased in late AD patients, supplementary melatonin in the late AD stages may not lead to clear effects on circadian rhythm disorders.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/fisiopatología , Ritmo Circadiano , Enfermedad de Alzheimer/metabolismo , Relojes Biológicos , Progresión de la Enfermedad , Humanos , Melatonina/metabolismo , Glándula Pineal/fisiopatología , Trastornos del Sueño-Vigilia/fisiopatología , Núcleo Supraquiasmático/fisiopatología
17.
Artículo en Inglés | MEDLINE | ID: mdl-18419306

RESUMEN

The circadian clock orchestrates cellular functions over 24 hours, including cell divisions, a process that results from the cell cycle. The circadian clock and cell cycle interact at the level of genes, proteins, and biochemical signals. The disruption or the reinforcement of the host circadian timing system, respectively, accelerates or slows down cancer growth through modifications of host and tumor circadian clocks. Thus, cancer cells not only display mutations of cell cycle genes but also exhibit severe defects in clock gene expression levels or 24-hour patterns, which can in turn favor abnormal proliferation. Most of the experimental research actively ongoing in this field has been driven by the original demonstration that cancer patients with poor circadian rhythms had poor quality of life and poor survival outcome independently of known prognostic factors. Further basic research on the gender dependencies in circadian properties is now warranted, because a large clinical trial has revealed that gender can largely affect the survival outcome of cancer patients on chronotherapeutic delivery. Mathematical models further show that the therapeutic index of chemotherapeutic drugs can be optimized through distinct delivery profiles, depending on the initial host/tumor status and variability in circadian entrainment and/or cell cycle length. Clinical trials and systems-biology approaches in cancer chronotherapeutics raise novel issues to be addressed experimentally in the field of biological clocks. The challenge ahead is to therapeutically harness the circadian timing system to concurrently improve quality of life and down-regulate malignant growth.


Asunto(s)
Cronoterapia , Ritmo Circadiano/fisiología , Neoplasias/patología , Neoplasias/terapia , Animales , División Celular/genética , División Celular/fisiología , Ritmo Circadiano/genética , Femenino , Humanos , Síndrome Jet Lag/fisiopatología , Masculino , Modelos Biológicos , Neoplasias/genética , Neoplasias/fisiopatología , Fotoperiodo , Núcleo Supraquiasmático/fisiopatología
18.
Cell Mol Biol (Noisy-le-grand) ; 51(3): 279-84, 2005 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16191395

RESUMEN

Depression is frequently associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which leads to repeated episodes of hypercortisolemia. Hypothalamic paraventricular neurons are believed to trigger these processes by aberrant generation and/or release of corticotropin releasing hormone, oxytocin, vasopressin, and nitric oxide (NO). Recent findings from two independent laboratories have demonstrated that the suprachiasmatic nucleus, which in part controls the cellular activity of paraventricular neurons (PVN), is also involved in affective disorder. The aim of the present study was to elucidate by stereological analysis, whether suprachiasmatic nucleus (SCN) nitric oxide synthase and neurophysin generating neurons are affected in neuropsychiatric disorders. We show that compared to controls the number of nitric oxide synthase immunoreactive neurons is greatly reduced both in depression and in schizophrenia. In subjects with affective disorder there was a correlation between the number of NOS-expressing cells and duration of treatment with antidepressants. The number of neurophysin-expressing SCN neurons was also fewer in cases with mood disorder. It is concluded that SCN-derived NO may be a relevant pathophysiological factor in neuropsychiatric disorders.


Asunto(s)
Hipotálamo/enzimología , Trastornos del Humor/enzimología , Neuronas/enzimología , Neurofisinas/metabolismo , Óxido Nítrico Sintasa/metabolismo , Núcleo Supraquiasmático/enzimología , Adulto , Depresión/enzimología , Depresión/metabolismo , Depresión/patología , Femenino , Humanos , Sistema Hipotálamo-Hipofisario/patología , Sistema Hipotálamo-Hipofisario/fisiopatología , Hipotálamo/metabolismo , Hipotálamo/patología , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Trastornos del Humor/metabolismo , Trastornos del Humor/patología , Neuronas/metabolismo , Neuronas/patología , Óxido Nítrico Sintasa/biosíntesis , Esquizofrenia/enzimología , Esquizofrenia/metabolismo , Esquizofrenia/patología , Núcleo Supraquiasmático/química , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiopatología
19.
Can J Neurol Sci ; 29(1): 33-40, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11858532

RESUMEN

This article reviews the literature for evidence of a disorder of circadian rhythm and hypothalamic function in cluster headache. Cluster headache exhibits diurnal and seasonal rhythmicity. While cluster headache has traditionally been thought of as a vascular headache disorder, its periodicity suggests involvement of the suprachiasmatic nucleus of the hypothalamus, the biological clock. Normal circadian function and seasonal changes occurring in the suprachiasmatic nucleus and pineal gland are correlated to the clinical features and abnormalities of circadian rhythm seen in cluster headache. Abnormalities in the secretion of melatonin and cortisol in patients with cluster headache, neuroimaging of cluster headache attacks, and the use of melatonin as preventative therapy in cluster headache are discussed in this review. While the majority of studies exploring the relationship between circadian rhythms and cluster headache are not new, we have entered a new diagnostic and therapeutic era in primary headache disorders. The time has come to use the evidence for a disorder of circadian rhythm in cluster headache to further development of chronobiotics in the treatment of this disorder.


Asunto(s)
Ritmo Circadiano , Cefalalgia Histamínica/fisiopatología , Hipotálamo/fisiopatología , Cefalalgia Histamínica/metabolismo , Humanos , Hidrocortisona/metabolismo , Hipotálamo/metabolismo , Imagen por Resonancia Magnética , Melatonina/metabolismo , Melatonina/uso terapéutico , Núcleo Supraquiasmático/fisiopatología
20.
Exp Gerontol ; 35(9-10): 1229-37, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11113604

RESUMEN

The incidence of disturbed sleep is strongly increased in healthy and demented elderly. Age-related alterations in the circadian timing system appear to contribute strongly to these problems. With increasing age, a lack of input to the suprachiasmatic nucleus (SCN), the biological clock of the brain, may accelerate de-activation of neurons involved in the generation of 24-h rhythm or output of this rhythm. This process appears to be reversible, since supplementation of stimuli that impinge on the SCN can re-activate these neurons and ameliorate disturbances in the sleep-wake rhythm.


Asunto(s)
Envejecimiento/fisiología , Ritmo Circadiano/fisiología , Trastornos del Sueño-Vigilia/fisiopatología , Anciano , Humanos , Melatonina/uso terapéutico , Fotoperiodo , Sueño/fisiología , Trastornos del Sueño-Vigilia/etiología , Trastornos del Sueño-Vigilia/terapia , Núcleo Supraquiasmático/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA